Quadrados mágicos ímpares

Quadrados mágicos são quadrados preenchidos com números sequenciais, de forma que a soma das linhas e colunas são iguais.

 

 

Exemplo: temos os números de 1 a 9 no quadrado, e a soma de cada linha ou coluna é 15.

Quadrado1.JPG

 

Parece difícil criar um negócio desses. Há uma forma mais ou menos intuitiva de ver esses quadrados mágicos. É isso que vou explicar agora.

 


 

Diagonais

Tudo começa com uma diagonal preenchida com 1, assim.

Quadrado2.JPG

 

Isto é o que os caras que manjam de matemática chamam de “matriz identidade”.

Ela obviamente tem a propriedade da soma das linhas e colunas ser 1, já que os números ficam na diagonal e uma linha ou coluna só contém este mesmo número.

 

Uma matriz assim com o número 2 e o número 3 também têm a mesma propriedade da soma das linhas e colunas serem iguais.

Quadrado3.JPG

Temos um bom ponto de partida para montar algo mais complicado.

 

Já que esta matriz é tão legal, que tal juntar uma na outra, na diagonal?

Quadrado4.JPG

 

Considerando que temos que montar um quadrado, vamos pintar o quadrado no centro desta estrutura. Aproveitamos para pintar de azul e verde os caras que não encaixam no quadrado.

 

Quadrado5.JPG

 

Mas, se a gente imaginar a tela não como um plano, mas como um “globo terrestre”, é como se os números que atravessarem o leste fossem parar no oeste, e os que atravessarem o oeste fossem parar no leste. Vamos fazer de conta que eles deram a volta ao mundo.

Quadrado6.JPG

 

Para fechar, os números que derem a volta no pólo norte vão parar no pólo sul, e vice-versa.

 

Quadrado7.JPG

Chegamos numa configuração interessante: a soma das linhas e colunas dá 6.

 

Quadrado8.JPG

 

Mas queremos números de 1 a 9, e não de 1 a 3. Vamos consertar isto. Se eu somar um número qualquer a alguma linha das matrizes diagonais, não mudarei a propriedade das linhas e colunas iguais, porque é como se eu estivesse somando um número à diagonal.

 

Quadrado9.JPG

Se eu somar 3 à segunda linha das matrizes diagonais, e 6 à terceira linha, terei os números de 1 a 9.

 

Fazendo o mesmo processo de juntar,  pintar,Quadrado10.JPG

 

 

Transladar no sentido horizontal, e transladar no sentido vertical,

Quadrado11.JPG

 

 

Chegamos no quadrado mágico!

 

Quadrado1.JPG

 

Outra propriedade interessante.

 

Colocando os números de 1 a 9 em ordem:

Simetria_num.JPG

O número 5 divide os números de forma equidistante.

 

Portanto, o 5 sempre tem que ficar no meio do quadrado mágico.

Um quadrado mágico mapeado a partir da equidistância do 5 fica assim:

Quadrado12.JPG

Com o zero no meio e valores simétricos (-1 e +1), (-2 e +2), etc.

 


 

Quadrados maiores

 

Este processo é válido para qualquer quadrado mágico de lado ímpar – o de lado par destrói a estrutura de simetria em torno do número central.

 

Por exemplo, para um quadrado 5 x 5, temos.

Diagonais:

Quadrado13.JPG

Diagonais com os números corretos

Quadrado14.JPG

 

Compondo as diagonais e pintando

Quadrado15.JPG

 

Transladando lateralmente

Quadrado16.JPG

Transladando verticalmente

Quadrado17.JPG

E temos um quadrado 5×5:

Quadrado18.JPG

Nota: olhando para a explicação, pode parecer fácil, natural. Mas fiquei vários dias pensando em como essas simetrias se encaixavam, etc.

Disponibilizei neste link uma rotina em Excel Vba que automatiza os passos descritos.

 

Para os quadrados pares, um dia faço alguma explicação e coloco aqui.

Arnaldo Gunzi

Mar 2016.


 

Nota:

O grande matemático indiano Ramanujan foi um gênio. Estudou sozinho e fez descobertas brilhantes, de nível mundial. É nele que se inspirou o filme “Gênio indomável”.

mathematical-genius-srinivasa-ramanujan-652x400-3-1443443542_350x163.jpg

Ramanujan escreveu vários quadrados mágicos em seus “blocos de notas”. Muito do que ele escreveu nesses blocos de notas permanece incompreensível até hoje. – portanto estas brincadeiras são para gente graúda também.

 

 

Note 2-6.jpg

 

 

 

Cubo X – Montar a base

Conforme os posts anteriores, o Cubo X foi montado no formato em X e com as camadas de topo e laterais prontas.

Para resolver a base, serão as seguintes etapas:
A – Virar todos os amarelos para cima
B – Resolver um dos lados externos
C – Resolver problemas de paridade e finalizar
É necessário apresentar alguns algoritmos para permitir trabalhar na base.  Estes estão apresentados no final deste post.

Parte A – Virar todos os amarelos para cima
Pode-se ter 2, 4, 6 ou mais peças de canto que não estão virados para cima, mas sempre em pares.
IMG_1475.JPG
Peças a serem giradas para ficar com o lado amarelo par acima

 

A ideia é posicionar as peças a serem viradas, via movimentos Translado 12 e 23.
Se tiver 2 peças, colocar elas juntas, no canto inferior esquerdo conforme figura, e aplicar o movimento rotação de cantos.
Cubo2giros.jpg
Aplicar mov. rotação de cantos
Se tiver 4 peças, colocar assim e aplicar o X paralelo.
IMG_1488.JPG
Para virar as 4 peças com o amarelo para cima, aplicar o X paralelo
Ou utilizar uma combinação do movimento X2, X paralelo e rotação, para posicionar / girar as peças.
Chega-se numa configuração como a seguinte.
IMG_1478.JPG
Peças com o lado amarelo para cima

Passo B
Uma vez que todas as peças estão com o lado amarelo para cima, a ideia é arrumar tudo sem desarrumar esta orientação.
Via movimentos de Translado 12 e 23, sempre é possível arrumar pelo menos uma das bandas. Na foto a seguir, a banda laranja está arrumada, faltando arrumar as demais.
IMG_1480.JPG
Lado laranja arrumado

Passo C
O caso principal é quando os movimentos de Translado 12 e 23, conseguem resolver o resto do cubo X.
Mas podem haver problemas de paridade.
Vou descrever as principais situações.
Duas peças de edge opostas. Aplicar três vezes o movimento X2.
MovX2tothe3
Duas bandas opostas. Aplicar o movimento de troca de bandas opostas.
MovTrocaBandasOpostas
Paridade trocada. Este é o caso mais chato. É quando fica assim:
IMG_1489.JPG
Paridade trocada: nem os movimentos de translado, nem as trocas de banda ou edge resolvem
Solução: aplicar o movimento de acerto de paridade, que vai dar uma bagunçada nas peças amarelas para cima. Mas basta aplicar novamente as técnicas acima para transladar e arrumar as peças, que a paridade agora está certa.
IMG_1491.JPG
E eis que o Cubo X está resolvido. Não é tão difícil assim.

 


 

Algoritmos utilizados
Movimento Translado 12
Translada12.PNG

Movimento Translado  23

 Translada23.PNG

Movimento X2

MovX2.PNG

Movimento X2 aplicado três vezes: Troca edges laterais
MovX2tothe3

Movimento X paralelo

MovXParalelo.PNG
Movimento rotação de cantos
TrocaCantos.PNG
Movim. Rotação de Cantos

 

Movimento Troca banda fácil (tem a desvantagem de inverter um edge lateral, obrigando a fazer dois desses movimentos para conservar a paridade. Mas é muito útil).
TrocaBandas.PNG
Movimento troca bandas opostas
MovTrocaBandasOpostas.PNG
Movimento acerto paridade
TrocaParidade.PNG
Troca edges do Meio
EdgesMeio.PNG
Movimento troca cantos x 5
Se aplicar 5 vezes o movimento troca canto, acontece de girar três edges centrais:
TrocaCantosX5.PNG

Conclusão
Há vários métodos possíveis de resolver o Cubo X ou qualquer outro puzzle desta natureza.
O que há em comum entre os métodos é  que estes são divididos em sub métodos e sub etapas, possíveis de serem entendidas por um ser humano. Por exemplo, no cubo X, primeiro arrumar o formato, depois resolver a camada de cima, do meio e a de baixo.

IMG_1491.JPG

 

O segredo é descobrir métodos invariantes, que mudam alguma coisa sem mudar outras. Reconhecer e discernir padrões. Dividir para conquistar.
Desta forma, algo muito complexo pode ser quebrado em etapas muito simples, e  o impossível será possível.
Fim.
Arnaldo Gunzi
Fev. 2016
Vide também

Poliedros mágicos

Cubo-X

Dodecaedro mágico


Próximo desafio:
Dodecaedro truncado – Tuttminx IMG_1503.JPG

 

 

Cubo X – Topo e laterais externas

No último capítulo do tutorial do X-Cube, chegamos ao cubo no formato em X.

 

IMG_1472.JPG
Anteriormente, foram apresentados a Introdução, Dissecação e Notação:

 

 

A ideia aqui é montar o cubo externo sem desmontar o formato em X. Primeiro, montar o topo e a lateral, e a seguir a base.
 


 

Parte A – Montar o topo

 

Na verdade, montar o topo do cubo externo não é um grande desafio. Basta fazer os movimentos r, l, f e b  combinados com a movimentação da última e/ou penúltima camadas. Fica como exercício para o leitor.

 

O cubo com o topo montado fica assim.

 

IMG_1473.JPG

 


 

Parte B: Montar a lateral

 

A ideia agora é montar a lateral externa sem desmontar o formato em X nem desmontar o topo.

 

Para tal, pode-se utilizar o “algoritmo lateral”, descrito a seguir.

 

Ele coloca a peça de edge do lado de  trás na lateral. As peças pintadas de cinza não interessam, neste momento.

 

Lembre-se da  Notação em que a letra em minúsculo refere-se ao cubo externo, e a letra em maiúsculo ao cubo interno.

 

MovTrocaLaterais.PNG

 

O irmão gêmeo simétrico é o movimento lateral à esquerda:

 

LateralEsquerda.PNG

 

Arrumando as laterais, fica assim:

 

IMG_1474.JPG

 

Basta aplicar sucessivamente este método, para todas as 8 peças laterais do  
cubo X.
IMG_1475.JPG
(Visão oposta do X-Cube)

 

Com isso, quase todo o cubo estará resolvido. Mas, por este método em camadas, a encrenca fica para o final: montar a base (a camada amarela). Isto fica para o próximo Post.

 

Arnaldo Gunzi
Fev 2016
 


Bônus: Padrãozinho legal

 

IMG_1423.JPG

Mais Gugol e Gugolplex

O termo “gugol” foi inventado por Edward Kasner, no seu livro “Matemática e Imaginação”.
 

Eu tenho este livro. É um dos tesouros de minha biblioteca. O original em português é de 1961. Foi relançado em 1976 e o comprei em meados dos anos 90, num sebo qualquer de SP. Sou uma das poucas pessoas que conheço que sabiam o que era gugol antes de existir o google, por conta deste livro.

matematica imaginacao 2 ed

 


Olha o que está escrito no original:

Sábias palavras são ditas pelas crianças, pelo menos tão frequentemente quanto pelos sábios. O nome “gugol” foi inventado por uma criança (o sobrinho do Dr. Kasner, com nove anos de idade) quando lhe pediram para pensar em um nome para um número muito grande, especificamente, 1 com 100 zeros depois dele. Ao mesmo tempo em que ele sugeriu “gugol”, deu o nome a um número ainda maior: “gugolplex”. Um gugolplex é muito maior que um gugol, mas ainda é finito.

A primeira sugestão era que um gugolplex deveria ser 1 seguido de tantos zeros quantos se pudesse escrever até cansar. Mas, assim sendo, como as pessoas se cansariam de modos diferentes para escrever um gugolplex, não seria conveniente considerar um lutador de boxe um matemático melhor que o Dr. Einstein só porque tem maior resistência. Então o gugolplex é 1 seguido de um gugol de zeros. Você pode ter uma ideia do tamanho deste número muito grande, mas finito, pelo fato de não haver espaço suficiente para escrevê-lo se alguém fosse até a estrela mais afastada, passando por todas as nebulosas, colocando zeros em cada centímetro do caminho.

 


 

Voltando ao post do blog.

Só para ter uma noção.

1 gugol = 10^100 =
= 10.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000

Maior do que qualquer coisa que conheço.


 

Pegando um número bem maior do que o gugol, por exemplo, 10^8.000

10^8.000 =
100.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000

Se não errei nenhum zero, é isto.

O número 10^8.000 é muito, muito maior do que qualquer coisa imaginável.


 

Mas o número 10^8.000, representado pela infinidade de zeros acima, é infinitamente menor do que um gugolplex (10^10^100). O 10^8.000 não é nem um milionésimo de milionésimo de milionésimo do googleplex.

10^8.000
(infinitamente menor que) 10^10.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000

Não vou tentar escrever este número aqui, porque iriam acabar os bytes do universo e ainda não iria finalizar a tarefa.

 

Arnaldo Gunzi

Ago 2015