Teoria dos Números Visual – Divisão (2)

Dando continuidade à Teoria dos Números via “álgebra de pedrinhas”, vamos provar alguns teoremas iniciais.

Teorema: Se a | b e n é inteiro, a | b*n

Relembrando, a divisão é como se o numerador b fosse o número de bolinhas, e o denominador, a, o número de colunas: distribua 8 bolinhas em 4 colunas, e temos o diagrama a seguir.

Se eu multiplicar o número por b um inteiro, digamos n = 2, é só copiar a quantidade de bolinhas anterior e colar em cima. As pedrinhas vão continuar sendo dispostas em a colunas. E o padrão se repete, para qualquer número n inteiro (inclusive negativo).

Teorema: Se a | b e a | c, a | b + c

A ideia aqui é similar. Se b consegue ser colocada em exatamente a colunas, e idem para c, é só empilhar os resultados para concluirmos que (b + c) podem ser colocados em a colunas.

No exemplo acima, 3 | 6 e 3 | 9, então 3 | (6 + 9)

Teorema: Se a | b e a | c, m e n são inteiros, a | b*m + c*n

Observe como a composição de afirmações simples vai gradativamente se tornando mais complexa.

Este teorema é basicamente a combinação dos dois anteriores.

Partindo para um exemplo, se 3 | 6 e 3 | 9, então 3 | (6*2 + 9).

Teorema: n | n

Este teorema é bem simples. Se tenho n pedrinhas, elas podem ser dispostas em n colunas, basta colocar uma do lado da outra.

exemplo: 6 | 6.

Teorema: n | 0

Infelizmente, não há representação visual, porque tenho zero pedrinhas na mão. Se tenho 0 pedrinhas, coloco 0 delas em cada uma das n colunas, mostrando que n | 0.

No próximo artigo sobre o tema, vamos continuar provando teoremas básicos de Teoria dos Nùmeros, usando a “álgebra de pedrinhas”. Fiquem ligados na página!

Veja também:

Ideias técnicas com uma pitada de filosofia

https://ideiasesquecidas.com

Rodar algoritmos de apoio em:

https://asgunzi.github.io/TeoriaNumeros01_Divisao/Index.html

Referência: Introdução à Teoria dos Números, José Plínio de Oliveira Santos, Instituto Nacional de Matemática Pura e Aplicada.

Deixe um comentário

Faça o login usando um destes métodos para comentar:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s