Pitágoras Visual

Como provar o Teorema de Pitágoras de modo mais visual?

Relembrando, o tal teorema muito famoso nas aulas da escola trabalha com triângulos retângulos (um ângulo reto, 90 graus). A soma do quadrado dos catetos é igual ao quadrado da hipotenusa, assim ensinam na escola.

Pitagoras1

Se eu fizer 4 cópias do triângulo e girar, tenho o seguinte desenho. Forma um quadradão, aproveitando o lado reto.

Este quadradão tem lados (a+b), portanto área (a+b)^2.

Só que este quadradão é formado por 4 triângulos de área (a*b)/2. E o quadrado branco no meio do desenho tem lado c e área c^2.

Portanto, área do quadradão = 4 áreas dos triângulos + área quadrado branco

(a+b)^2 = 4*(a*b)/2 + c^2

a^2 + 2ab + b^2 = 2ab + c^2

a^2 + b^2 = c^2

CQD.

Pitagoras2

Mas tem álgebra demais no método acima. Que tal redesenhar o quadrado assim:

Pitagoras3

Este quadradão é a mesma coisa do anterior, rearranjado. Também tem área (a+b)^2..

Ambos tem os 4 triângulos retângulos originais.

No primeiro desenho, o quadrado branco grande tem área c^2.

No segundo desenho, o quadrado branco pequeno tem área a^2, e o quadrado maior em área b^2.

Pitagoras4

Há milhares de provas para o Teorema de Pitágoras. E as pessoas da antiguidade pensavam assim, em termos de geometria, desenhos na areia, pedrinhas.

A fonte das ideias aqui presentes aqui é o excelente livro “Proof without words”.

Arnaldo Gunzi

Set 2015.

Um comentário sobre “Pitágoras Visual

  1. Pingback: Gênios idiotas e Idiotas gênios | Forgotten Lore

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s