Prova visual da sequência 1 + 2 + 4 + 8 = 2^N – 1

A progressão geométrica 1 + 2 + 4 + 8 + …, com cada elemento sendo o dobro da anterior, tem soma igual a 2^N-1, onde N é o número de elementos da soma.

Há uma prova visual muito bonita desta.

Imagine que tomamos emprestado um quadrado, o vermelho, e somamos o primeiro elemento (1):

O próximo elemento da soma, o 2, colocamos à direita – espelhando a soma anterior.

O próximo elemento da soma, o 4, é representado abaixo, de novo espelhando a soma anterior.

E assim sucessivamente. Para 8:

Para o 16:

Com 10 elementos:

Criei um programinha para visualizar dinamicamente essa soma geométrica. É da onde os prints acima foram tirados. Segue o link:

https://asgunzi.github.io/somageometricaD3

Agora, um pouco da teoria. Uma soma de PG finita é dada pela fórmula:

No caso da sequência acima, a1 = 1, q = 2, para N elementos. Então, fica S = 1*(2^N-1)/(2-1) = 2^N-1, que é a mesma conta.

Eu prefiro a prova visual…

Veja também:


Visualize a sequência de Fibonacci https://asgunzi.github.io/Fibonacci

Fórmula de soma de PA visual

https://ideiasesquecidas.com/2015/09/04/soma-visual-de-pa

Laboratório de Matemática


https://ideiasesquecidas.com/laboratorio-de-matematica

Um comentário sobre “Prova visual da sequência 1 + 2 + 4 + 8 = 2^N – 1

Deixe uma resposta para Arnaldo Gunzi Cancelar resposta

Faça o login usando um destes métodos para comentar:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s