As curvas do espirógrafo e as órbitas dos planetas

Comprei um espirógrafo, para analisar melhor as curvas que este produz (são diferentes das que eu tinha feito antes).

Segue a implementação descrita a seguir, em versão web: https://asgunzi.github.io/Espirografos/.

Espirógrafo desenhos geométricos hipotroclóides e epitroclóides

Fiz algumas figuras para entender a lógica deste – vide o scan abaixo.

Esquematicamente, imagine um círculo menor rodando dentro de um círculo maior.

Além disso, dentro do círculo menor, escolho a posição do ponto onde coloco a caneta, representada pelo círculo vermelho abaixo.

A posição inicial do círculo menor é dada pelo círculo verde abaixo.

O raio do círculo maior é R, o do círculo menor que roda dentro do círculo maior é r2.

A posição da caneta pode ser descrita por um raio r3, e um ângulo lambda em relação ao centro do círculo menor no início da rotação.

Imagine que o círculo menor rodou um ângulo theta em relação ao círculo maior.

A posição do CENTRO do círculo menor vai ser dada pelas equações da figura – até agora, nenhuma novidade, são equações de um círculo.

A posição inicial do círculo, em verde, mudou, porque girou com o círculo.

O ângulo phi, do deslocamento da posição inicial, é obtido notando que o arco da circunferência maior tem a mesma dimensão do arco da circunferência do círculo menor.

Um arco de circunferência é dado por R*ângulo, onde o ângulo é medido em radianos.

Assim, R*theta = r2*phi.

Ou seja, phi = R*theta / r2.

Se o raio menor r2 for pequeno, phi é maior, ou seja, vai ter que girar mais vezes para chegar ao mesmo ponto.

Agora, finalmente, temos que encontrar a posição da caneta (a bola vermelha). Lembrando, ela estava a um ângulo lambda da posição inicial, e num raio r3.

Portanto, o ângulo até o ponto de tangência entre os dois círculos é (phi – lambda), onde phi = R*theta / r2.

As equações finais têm que levar em consideração a posição inicial do círculo maior, o centro do círculo menor, e a rotação descrita acima.

X = x0 + (R-r2)*Math.sin(theta)-r3*Math.sin(theta*R/r2 - phi));

Y = y0 + (R-r2)*Math.cos(theta)-r3*Math.cos(theta*R/r2 - phi));

Fiz a implementação utilizando a excelente biblioteca D3 de Javascript.

Para o raio maior, utilizei o valor arbitrário de 200. Os outros parâmetros são o raio menor (r2), a posição da caneta (r3) e o número de voltas que o círculo menor dá em torno do maior.

Seguem alguns resultados.

Com os parâmetros descritos, e 1 volta.

2 voltas:

Chega uma hora que não adianta mais dar voltas, que elas coincidem na mesma trajetória.

Outros exemplos:

Nota: o ângulo lambda foi desprezado, no final das contas, porque apenas desloca um pouco o ângulo, sem mudar o formato da figura.

Vide a implementação citada aqui: https://asgunzi.github.io/Espirografos/.

A dança das estrelas

As curvas desenhadas acima lembram as curvas que os planetas fazem no céu, vistos da Terra.

When the motion of the planets are charted as their so called ...

Imagine que a Terra é o círculo menor, girando ao redor do Sol, o círculo maior. A Terra também gira em torno de si mesma. Agora, um outro planeta, Vênus, também gira ao redor do Sol numa velocidade diferente.

Certamente, a equação dos planetas é muito mais complexa: é em três dimensões, as órbitas são elípticas, e o outro planeta gira em torno do Sol também. Porém, a ideia geral é mais ou menos semelhante: uma composição de rotações em torno de rotações de rotações, ora fazendo a posição aparente ir para frente, ora para trás, numa eterna dança celestial…

Trilha sonora: O segundo sol, Cássia Eller

“Quando o segundo sol chegar, para realinhar as órbitas dos planetas…”

Vide também:

https://ideiasesquecidas.com/2015/03/03/a-danca-de-afrodite/

https://ideiasesquecidas.com/2017/07/05/plutao-e-a-falacia-narrativa/

Um comentário sobre “As curvas do espirógrafo e as órbitas dos planetas

Deixe um comentário

Faça o login usando um destes métodos para comentar:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s